TABLE 1. Mortality and Morbidity Risk Coefficients for Selected Radionuclides^a | | Lifetime Cancer Risk | | | | | | | | | |------------------------------|-----------------------|-----------------------|----------------------|-----------------------|-----------------------|----------------------|--|--|--| | Isotope | Mortality | | | Morbidity | | | | | | | | Inhalation | Ingestion | External | Inhalation | Ingestion | External | | | | | Americium-241 | 2.4×10^{-8} | 9.5×10^{-11} | 1.9×10^{-8} | 2.8×10^{-8} | 1.3×10^{-10} | 2.8×10^{-8} | | | | | Americium-242m | 1.3×10^{-8} | 6.8×10^{-11} | - | 1.6×10^{-8} | 9.0×10^{-11} | - | | | | | Americium-243 | 2.3×10^{-8} | 9.8×10^{-11} | 4.3×10^{-7} | 2.7×10^{-8} | 1.4×10^{-10} | 6.4×10^{-7} | | | | | Berkelium-247 | 4.0×10^{-8} | 1.2×10^{-10} | 2.1×10^{-7} | 4.8×10^{-8} | 1.6×10^{-10} | 3.1×10^{-7} | | | | | Cadmium-109 | 2.0×10^{-11} | 4.2×10^{-12} | - | 2.2×10^{-11} | 6.7×10^{-12} | - | | | | | Cadmium-113 | 8.1×10^{-11} | 2.0×10^{-11} | - | 1.1×10^{-10} | 2.9×10^{-11} | - | | | | | Cadmium-113m | 9.3×10^{-11} | 2.5×10^{-11} | - | 1.3×10^{-10} | 3.6×10^{-11} | - | | | | | Californium-248 | 2.4×10^{-8} | 3.8×10^{-11} | - | 2.6×10^{-8} | 6.2×10^{-11} | - | | | | | Californium-249 | 4.0×10^{-8} | 1.2×10^{-10} | 9.3×10^{-7} | 4.8×10^{-8} | 1.6×10^{-10} | 1.4×10^{-6} | | | | | Californium-250 | 3.5×10^{-8} | 8.0×10^{-11} | - | 3.7×10^{-8} | 1.1×10^{-10} | - | | | | | Californium-251 | 4.1×10^{-8} | 1.3×10^{-10} | 2.6×10^{-7} | 4.9×10^{-8} | 1.7×10^{-10} | 3.8×10^{-7} | | | | | Californium-252 ^b | 2.1×10^{-8} | 4.1×10^{-11} | - | 2.2×10^{-8} | 5.7×10^{-11} | - | | | | | Carbon-14 | 6.5×10^{-12} | 1.4×10^{-12} | - | 7.1×10^{-12} | 2.0×10^{-12} | - | | | | | Cesium-134 | 1.1×10^{-11} | 3.5×10^{-11} | 4.8×10^{-6} | 1.6×10^{-11} | 5.1×10^{-11} | 7.1×10^{-6} | | | | | Cesium-135 | 1.3×10^{-12} | 4.0×10^{-12} | - | 1.9×10^{-12} | 5.9×10^{-12} | - | | | | | Cesium-137 | 8.1×10^{-12} | 2.5×10^{-11} | 1.7×10^{-6} | 1.2×10^{-11} | 3.7×10^{-11} | 2.5×10^{-6} | | | | | Chlorine-36 | 9.6×10^{-11} | 2.9×10^{-12} | - | 1.0×10^{-10} | 4.4×10^{-12} | - | | | | | Cobalt-57 | 1.8×10^{-12} | 9.0×10^{-13} | 2.4×10^{-7} | 2.1×10^{-12} | 1.5×10^{-12} | 3.6×10^{-7} | | | | | Cobalt-60 | 3.0×10^{-11} | 1.4×10^{-11} | 8.5×10^{-6} | 3.6×10^{-11} | 2.2×10^{-11} | 1.2×10^{-5} | | | | | Curium-242 | 1.4×10^{-8} | 3.2×10^{-11} | - | 1.5×10^{-8} | 5.5×10^{-11} | - | | | | | Curium-243 | 2.4×10^{-8} | 8.5×10^{-11} | 2.9×10^{-7} | 2.7×10^{-8} | 1.2×10^{-10} | 4.2×10^{-7} | | | | | Curium-244 | 2.3×10^{-8} | 7.5×10^{-11} | - | 2.5×10^{-8} | 1.1×10^{-10} | - | | | | | Curium-245 | 2.4×10^{-8} | 9.5×10^{-11} | 1.6×10^{-7} | 2.8×10^{-8} | 1.3×10^{-10} | 2.4×10^{-7} | | | | | Curium-246 | 2.4×10^{-8} | 9.3×10^{-11} | - | 2.8×10^{-8} | 1.3×10^{-10} | - | | | | | Curium-247 | 2.2×10^{-8} | 9.1×10^{-11} | 9.3×10^{-7} | 2.5×10^{-8} | 1.3×10^{-10} | 1.4×10^{-6} | | | | | Curium-248 ^c | 8.8×10^{-8} | 3.4×10^{-10} | - | 1.0×10^{-7} | 4.8×10^{-10} | - | | | | | Curium-250 ^c | 5.0×10^{-7} | 2.0×10^{-9} | 9.7×10^{-7} | 5.8×10^{-7} | 2.8×10^{-9} | 1.4×10^{-6} | | | | | Europium-150 | 2.1×10^{-10} | 3.6×10^{-12} | 4.4×10^{-6} | 2.6×10^{-10} | 6.1×10^{-12} | 6.5×10^{-6} | | | | | Europium-152 | 1.5×10^{-10} | 5.0×10^{-12} | 3.6×10^{-6} | 1.9×10^{-10} | 8.7×10^{-12} | 5.3×10^{-6} | | | | | Europium-154 | 1.7×10^{-10} | 8.5×10^{-12} | 4.0×10^{-6} | 2.1×10^{-10} | 1.5×10^{-11} | 5.8×10^{-6} | | | | | Europium-155 | 1.7×10^{-11} | 1.6×10^{-12} | 8.4×10^{-8} | 1.9×10^{-11} | 2.8×10^{-12} | 1.2×10^{-7} | | | | | Iodine-129 | 6.2×10^{-12} | 2.0×10^{-11} | - | 6.1×10^{-11} | 1.9×10^{-10} | - | | | | | Iodine-131 | 2.1×10^{-12} | 6.9×10^{-12} | 1.1×10^{-6} | 1.9×10^{-11} | 6.5×10^{-11} | 1.6×10^{-6} | | | | | Iridium-192 | 2.1×10^{-11} | 6.0×10^{-12} | 2.3×10^{-6} | 2.4×10^{-11} | 1.1×10^{-11} | 3.4×10^{-6} | | | | | Iridium-192m | 1.7×10^{-11} | 8.7×10^{-13} | 3.7×10^{-7} | 2.0×10^{-11} | 1.3×10^{-12} | 5.4×10^{-7} | | | | | Iridium-194m | 4.0×10^{-11} | 7.3×10^{-12} | 6.9×10^{-6} | 4.6×10^{-11} | 1.3×10^{-11} | 1.0×10^{-5} | | | | | Neptunium-235 | 1.0×10^{-12} | 2.8×10^{-13} | - | 1.2×10^{-12} | 5.1×10^{-13} | - | | | | | Neptunium-236 | 2.6×10^{-9} | 1.5×10^{-11} | 2.2×10^{-7} | 3.0×10^{-9} | 2.3×10^{-11} | 3.2×10^{-7} | | | | | Neptunium-237 | 1.5×10^{-8} | 5.8×10^{-11} | 5.4×10^{-7} | 1.8×10^{-8} | 9.1×10^{-11} | 8.0×10^{-7} | | | | | Nickel-59 | 3.6×10^{-13} | 2.3×10^{-13} | - | 4.7×10^{-13} | 3.9×10^{-13} | - | | | | | Nickel-63 | 1.4×10^{-12} | 5.7×10^{-13} | - | 1.6×10^{-12} | 9.5×10^{-13} | - | | | | | | Lifetime Cancer Risk | | | | | | | | |----------------------------|-----------------------|-----------------------|----------------------|-----------------------|-----------------------|----------------------|--|--| | Isotope | Mortality | | | Morbidity | | | | | | _ | Inhalation | Ingestion | External | Inhalation | Ingestion | External | | | | Plutonium-236 | 2.1×10^{-8} | 6.9×10^{-11} | - | 2.3×10^{-8} | 9.9×10^{-11} | - | | | | Plutonium-238 | 3.0×10^{-8} | 1.3×10^{-10} | - | 3.4×10^{-8} | 1.7×10^{-10} | - | | | | Plutonium-239 | 2.9×10^{-8} | 1.3×10^{-10} | - | 3.3×10^{-8} | 1.7×10^{-10} | - | | | | Plutonium-240 | 2.9×10^{-8} | 1.3×10^{-10} | - | 3.3×10^{-8} | 1.7×10^{-10} | - | | | | Plutonium-241 | 2.8×10^{-10} | 1.9×10^{-12} | - | 3.3×10^{-10} | 2.3×10^{-12} | - | | | | Plutonium-242 | 2.8×10^{-8} | 1.3×10^{-10} | - | 3.1×10^{-8} | 1.7×10^{-10} | - | | | | Plutonium-244 ^d | 2.7×10^{-8} | 1.3×10^{-10} | 1.0×10^{-6} | 3.1×10^{-8} | 1.6×10^{-10} | 1.5×10^{-6} | | | | Polonium-210 | 1.0×10^{-8} | 1.6×10^{-9} | - | 1.1×10^{-8} | 2.3×10^{-9} | - | | | | Potassium-40 | 2.1×10^{-10} | 2.2×10^{-11} | 5.5×10^{-7} | 2.2×10^{-10} | 3.4×10^{-11} | 8.0×10^{-7} | | | | Protactinium-231 | 2.5×10^{-7} | 6.0×10^{-10} | 1.1×10^{-6} | 2.6×10^{-7} | 8.8×10^{-10} | 1.6×10^{-6} | | | | Radium-226 | 2.4×10^{-8} | 2.9×10^{-9} | 5.8×10^{-6} | 2.5×10^{-8} | 4.0×10^{-9} | 8.5×10^{-6} | | | | Radium-228 | 9.0×10^{-8} | 1.3×10^{-9} | 8.4×10^{-6} | 9.7×10^{-8} | 1.9×10^{-9} | 1.2×10^{-5} | | | | Samarium-146 | 1.2×10^{-8} | 4.0×10^{-11} | - | 1.4×10^{-8} | 5.3×10^{-11} | - | | | | Samarium-151 | 8.6×10^{-12} | 4.6×10^{-13} | - | 9.2×10^{-12} | 8.1×10^{-13} | - | | | | Selenium-79 | 2.3×10^{-12} | 6.7×10^{-12} | - | 3.3×10^{-12} | 9.7×10^{-12} | - | | | | Strontium-90 | 1.0×10^{-10} | 7.5×10^{-11} | - | 1.1×10^{-10} | 9.5×10^{-11} | ı | | | | Technetium-97 | 7.6×10^{-13} | 2.3×10^{-13} | - | 8.5×10^{-13} | 3.9×10^{-13} | ı | | | | Technetium-98 | 2.6×10^{-11} | 6.0×10^{-12} | 4.4×10^{-6} | 3.0×10^{-11} | 1.0×10^{-11} | 6.5×10^{-6} | | | | Technetium-99 | 1.3×10^{-11} | 2.3×10^{-12} | - | 1.4×10^{-11} | 4.0×10^{-12} | - | | | | Thorium-229 | 2.2×10^{-7} | 4.7×10^{-10} | 7.8×10^{-7} | 2.3×10^{-7} | 7.2×10^{-10} | 1.2×10^{-6} | | | | Thorium-230 | 2.7×10^{-8} | 8.0×10^{-11} | - | 2.9×10^{-8} | 1.2×10^{-10} | ı | | | | Thorium-232 | 4.1×10^{-8} | 9.1×10^{-11} | - | 4.3×10^{-8} | 1.3×10^{-10} | - | | | | Tin-121m | 4.1×10^{-11} | 2.9×10^{-12} | - | 4.4×10^{-11} | 5.1×10^{-12} | - | | | | Tin-126 | 3.9×10^{-10} | 3.0×10^{-11} | 8.8×10^{-6} | 4.2×10^{-10} | 5.3×10^{-11} | 1.3×10^{-5} | | | | Tritium (H-3) | 3.9×10^{-14} | 4.4×10^{-14} | - | 5.6×10^{-14} | 6.5×10^{-14} | - | | | | Uranium-232 | 1.8×10^{-8} | 2.7×10^{-10} | - | 1.9×10^{-8} | 3.9×10^{-10} | ı | | | | Uranium-233 | 1.1×10^{-8} | 6.3×10^{-11} | - | 1.2×10^{-8} | 9.7×10^{-11} | ı | | | | Uranium-234 | 1.1×10^{-8} | 6.1×10^{-11} | - | 1.1×10^{-8} | 9.5×10^{-11} | ı | | | | Uranium-235 | 9.5×10^{-9} | 6.2×10^{-11} | 3.7×10^{-7} | 1.0×10^{-8} | 9.8×10^{-11} | 5.4×10^{-7} | | | | Uranium-236 | 9.9×10^{-9} | 5.8×10^{-11} | - | 1.0×10^{-8} | 9.0×10^{-11} | - | | | | Uranium-238 | 8.8×10^{-9} | 7.5×10^{-11} | - | 9.3×10^{-9} | 1.2×10^{-10} | - | | | | Zirconium-93 | 8.4×10^{-12} | 1.7×10^{-12} | - | 9.2×10^{-12} | 2.6×10^{-12} | - | | | This table provides selected risk coefficients for inhalation and dietary ingestion of various radionuclides, and for external gamma irradiation where that entry is appropriate. (Source: Cancer Risk Coefficients for Environmental Exposure to Radionuclides, Federal Guidance Report 13, U.S. Environmental Protection Agency, EPA 402-R-99-001, September 1999.) The mortality risk represents the lifetime risk of incurring a fatal cancer, and the morbidity risk represents the risk of incurring all cancers (fatal and non-fatal). Values are averaged over all ages and both genders. (For context, 10⁻⁹ is a billionth, 10⁻¹² is a trillionth, and a pCi is a picocurie, or a trillionth of a curie.) To convert to standard international units, multiply by 27 pCi per becquerel (Bq). Values shown here include the contributions from short-lived decay products, as indicated in the radionuclide-specific fact sheets. (For example, strontium-90 includes the contribution from yttrium-90, and uranium-238 includes the contribution from thorium-234). For ingestion and inhalation, units are risk per pCi. For inhalation, the values corresponding to the recommended default absorption type for particulates are shown; the maximum value is given if no absorption type was recommended. For ingestion, the dietary values shown are the highest for ingestion exposures; values for tap water ingestion are typically 70 to 80% of those for diet. The values for tritium are for tritiated water. For external exposure, risk coefficients are given for those radionuclides having gamma-ray energies in excess of 0.03 MeV per decay, accounting for the fraction of time that the radioactive decay results in the emission of gamma rays. A dash indicates the radionuclide or its decay products does not emit significant gamma radiation (see the companion fact sheet on *Radioactive Properties, Internal Distribution, and Risk Coefficients*). Units for external gamma risk coefficients shown in the table are risk per pCi/g soil for one year of exposure. Although no inhalation or ingestion coefficients are available for krypton isotopes, coefficients do exist for external gamma exposures. Submersion in a cloud of krypton gas poses the highest risk, and the following values are in units of risk per pCi/cm³ air for one year of exposure. For krypton-81, mortality and morbidity risk coefficients are 1.5×10^{-5} and 2.3×10^{-5} , respectively. For krypton-85, mortality and morbidity risk coefficients are 8.5×10^{-6} and 1.2×10^{-5} , respectively. - b Standard risk coefficients are not available for californium-252. To help address this gap, values shown here have been derived by multiplying the standard risk coefficients for californium-250 by the ratios of the dose conversion factors for californium-252 to californium-250, for the given exposure pathways and endpoints. - Standard risk coefficients are not available for curium-248 or curium-250. To help address this gap, values shown here have been derived. For curium-248, standard risk coefficients for curium-246 were multiplied by the ratios of the standard dose conversion factors for curium-248 to curium-246, for the given exposure pathways and endpoints. For curium-250, standard risk coefficients for curium-246 were multiplied by the ratios of the standard dose conversion factors for curium-250 to curium-246, for the given exposure pathways and endpoints. The risk coefficient for external exposure for curium-250 is attributable to its short-lived radioactive decay products. - d Standard risk coefficients are not available for plutonium-244. To help address this gap, values shown here have been derived by multiplying the standard risk coefficients for plutonium-242 by the ratios of the dose conversion factors for plutonium-244 to plutonium-242, for the given exposure pathways and endpoints. The risk coefficient for external exposure is attributable to its short-lived radioactive decay products, principally neptunium-240m.